metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(3-Pyridinio)benzimidazolium pentachloridobismuthate(III) monohydrate

Li-Jing Cui, Hai-Jun Xu* and Yi-Jie Pang

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: xuhj@seu.edu.cn

Received 19 June 2009; accepted 26 June 2009

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.015 Å; R factor = 0.052; wR factor = 0.116; data-to-parameter ratio = 20.3.

In the title compound, $(C_{12}H_{11}N_3)$ [BiCl₅]·H₂O, the Bi^{III} atom is coordinated by five chloride anions in a distorted squarepyramidal geometry. The planar imidazole ring system [maximum deviation = 0.012 (3) Å] is oriented at a dihedral angle of 6.08 (5)° with respect to the protonated pyridine ring. An O-H···Cl interaction links the water molecule to the dianion. In the crystal structure, intermolecular O-H···Cl, N-H···O and N-H···Cl interactions link the molecules into a three-dimensional network.

Related literature

For the properties of bismuthate(III) compounds, see: Turel *et al.* (1998); Goforth *et al.* (2004).

Experimental

Crystal data (C₁₂H₁₁N₃)[BiCl₅]·H₂O

 $M_r=601.48$

Monoclinic, $P2_1/c$	
a = 9.3297 (19) Å	
<i>b</i> = 13.391 (3) Å	
c = 14.476 (3) Å	
$\beta = 101.78 \ (3)^{\circ}$	
V = 1770.6 (6) Å ³	

Data collection

Rigaku SCXmini diffractometer	17812 measured reflections
Absorption correction: multi-scan	4049 independent reflections
(CrystalClear; Rigaku, 2005)	2822 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.090, \ T_{\max} = 0.180$	$R_{\rm int} = 0.115$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 199 parameters $wR(F^2) = 0.116$ H-atom parameters constrainedS = 1.15 $\Delta \rho_{max} = 1.28$ e Å $^{-3}$ 4049 reflections $\Delta \rho_{min} = -2.37$ e Å $^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.16 \text{ mm}$

 $\mu = 10.72 \text{ mm}^-$

T = 294 K

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots Cl5^{i}$	0.86	2.65	3.267 (8)	130
$N1-H1A\cdots Cl1^{ii}$	0.86	2.66	3.302 (8)	133
$N2-H2A\cdotsO1W^{iii}$	0.86	1.86	2.680 (9)	159
$N3-H3B\cdots Cl4^{iv}$	0.86	2.33	3.104 (9)	150
$O1W - H1WA \cdot \cdot \cdot Cl3^{ii}$	0.85	2.62	3.292 (7)	137
$O1W - H1WB \cdots Cl5$	0.85	2.77	3.190 (7)	112

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (iii) x - 1, y, z; (iv) x, y, z + 1.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2717).

References

Goforth, A. M., Smith, M. D., Peterson, L. Jr & zur Loye, H.-C. (2004). *Inorg. Chem.* **43**, 7042–7049.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Turel, I., Golič, L., Bukovec, P. & Gubina, M. (1998). *Inorg. Biochem.* **71**, 53–60.

supplementary materials

Acta Cryst. (2009). E65, m852 [doi:10.1107/S1600536809024568]

2-(3-Pyridinio)benzimidazolium pentachloridobismuthate(III) monohydrate

L.-J. Cui, H.-J. Xu and Y.-J. Pang

Comment

Bismuthate(III) compounds have received great attention owing to their anti-ulcer activity (Turel *et al.*, 1998) and their unique optical and electronic properties, including nonlinear optical activity, luminescence and semiconductivity (Goforth *et al.*, 2004). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains a 2-(3'-pyridinio)benzimidazolium dication, a pentachlorobismuthate dianion and a water molecule. In the dianion, the bismuth (III) atom is coordinated by five chloride anions in a distorted square-pyramidal geometry. The Bi-Cl distances are in the range of 2.519 (3)-2.787 (3) Å. In the dication, the planar imidazole ring system [with maximum deviation of 0.012 (3) Å for atom C3] is oriented with respect to the pyridine ring at a dihedral angle of 6.08 (5)°. Intramolecular O-H…Cl interaction links the water molecule to the dianion (Table 1).

In the crystal structure, intramolecular O-H···Cl and intermolecular N-H···O and N-H···Cl interactions (Table 1) link the molecules into a three-dimensional network (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, concentrated hydrochloric acid (12 M) was added dropwise to a mixture of 2-(3-pyridinio)benzimidazole (0.1 mmol) and water (7 ml), until complete dissolution of the solid phase. Concentrated hydrochloric acid was similarly added dropwise to dissolve the solid phase persisting in a mixture of bismuth chloride (0.3 mmol) and water (5 ml). The two solutions were then mixed and stirred for 20 min. The resulting precipitate was filtered off and dissolved in hydrochloric acid. Colorless crystals suitable for X-ray analysis were obtained after several weeks by slow evaporation of the solvent at room temperature.

Refinement

H atoms were positioned geometrically with O-H = 0.85 Å (for H₂O), N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H atoms and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C,N,O)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level

Fig. 2. A partial packing diagram.

2-(3-Pyridinio)benzimidazolium pentachloridobismuthate(III) monohydrate

Crystal data	
$(C_{12}H_{11}N_3)[BiCl_5]\cdot H_2O$	$F_{000} = 1128$
$M_r = 601.48$	$D_{\rm x} = 2.256 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1647 reflections
a = 9.3297 (19) Å	$\theta = 3.0-27.6^{\circ}$
b = 13.391 (3) Å	$\mu = 10.72 \text{ mm}^{-1}$
c = 14.476 (3) Å	T = 294 K
$\beta = 101.78 \ (3)^{\circ}$	Prism, colorless
V = 1770.6 (6) Å ³	$0.25\times0.20\times0.16~mm$
Z = 4	

Data collection

Rigaku SCXmini diffractometer	4049 independent reflections
Radiation source: fine-focus sealed tube	2822 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.115$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 294 K	$\theta_{\min} = 3.0^{\circ}$
ω scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)	$k = -17 \rightarrow 17$
$T_{\min} = 0.090, \ T_{\max} = 0.180$	$l = -18 \rightarrow 18$
17812 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.052$	H-atom parameters constrained
$wR(F^2) = 0.116$	$w = 1/[\sigma^2(F_o^2) + (0.0236P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.15	$(\Delta/\sigma)_{\rm max} < 0.001$

4049 reflections

199 parameters

 $\Delta \rho_{max} = 1.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -2.36 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Bi1	0.50077 (4)	0.91031 (3)	0.12159 (2)	0.03242 (14)
C11	0.4928 (3)	0.7336 (2)	0.1799 (2)	0.0538 (8)
C12	0.7784 (3)	0.8830 (2)	0.1188 (2)	0.0516 (8)
C13	0.4576 (3)	0.8682 (2)	-0.07062 (17)	0.0432 (6)
Cl4	0.1991 (3)	0.8994 (2)	0.09655 (18)	0.0461 (7)
C15	0.5648 (3)	0.9799 (2)	0.29758 (18)	0.0474 (7)
O1W	0.6526 (7)	0.8372 (5)	0.4766 (5)	0.060 (2)
H1WA	0.6470	0.7747	0.4854	0.072*
H1WB	0.6594	0.8234	0.4204	0.072*
N1	0.1677 (8)	0.8703 (6)	0.6102 (6)	0.041 (2)
H1A	0.2466	0.8720	0.6529	0.049*
N2	-0.0597 (8)	0.8600 (6)	0.5442 (5)	0.0296 (18)
H2A	-0.1532	0.8541	0.5371	0.036*
N3	0.0630 (10)	0.8739 (7)	0.8836 (6)	0.046 (2)
H3B	0.1305	0.8813	0.9333	0.055*
C1	0.0159 (10)	0.8685 (8)	0.4712 (7)	0.034 (2)
C2	0.1627 (10)	0.8756 (8)	0.5147 (7)	0.039 (3)
C3	0.2710 (12)	0.8833 (10)	0.4600 (8)	0.066 (4)
H3A	0.3700	0.8858	0.4880	0.079*
C4	0.2242 (12)	0.8869 (9)	0.3637 (9)	0.061 (4)
H4A	0.2924	0.8938	0.3253	0.073*
C5	0.0769 (12)	0.8804 (8)	0.3231 (7)	0.049 (3)
H5A	0.0494	0.8827	0.2577	0.058*
C6	-0.0300 (11)	0.8709 (8)	0.3738 (7)	0.041 (3)
H6A	-0.1284	0.8662	0.3448	0.049*
C7	0.0345 (9)	0.8625 (7)	0.6271 (7)	0.030 (2)
C8	-0.0055 (10)	0.8596 (7)	0.7183 (7)	0.030 (2)
С9	0.1021 (11)	0.8701 (8)	0.8005 (7)	0.042 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H9A	0.2003	0.8745	0.7970	0.051*
C10	-0.0742 (12)	0.8670 (8)	0.8940 (7)	0.041 (3)
H10A	-0.0956	0.8702	0.9539	0.050*
C11	-0.1834 (11)	0.8552 (8)	0.8174 (7)	0.041 (3)
H11A	-0.2800	0.8491	0.8243	0.049*
C12	-0.1504 (10)	0.8524 (7)	0.7299 (7)	0.032 (2)
H12A	-0.2255	0.8457	0.6771	0.039*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Bi1	0.0332 (2)	0.0371 (2)	0.0254 (2)	-0.00200 (18)	0.00251 (15)	0.00118 (18)
Cl1	0.0385 (15)	0.0486 (19)	0.068 (2)	-0.0013 (13)	-0.0025 (14)	0.0145 (15)
Cl2	0.0353 (15)	0.071 (2)	0.0482 (18)	-0.0031 (13)	0.0091 (13)	0.0045 (15)
C13	0.0503 (16)	0.0478 (17)	0.0285 (14)	0.0024 (13)	0.0014 (12)	-0.0016 (12)
Cl4	0.0344 (14)	0.072 (2)	0.0317 (14)	0.0069 (13)	0.0062 (11)	-0.0009 (14)
C15	0.0567 (17)	0.0524 (19)	0.0308 (15)	-0.0069 (14)	0.0031 (12)	-0.0090 (13)
O1W	0.057 (5)	0.044 (5)	0.074 (6)	-0.010 (4)	-0.001 (4)	0.022 (4)
N1	0.033 (5)	0.051 (6)	0.034 (5)	0.001 (4)	-0.004 (4)	0.002 (4)
N2	0.022 (4)	0.036 (5)	0.029 (5)	0.005 (3)	0.001 (4)	-0.001 (4)
N3	0.050 (6)	0.053 (6)	0.031 (5)	-0.002 (5)	-0.003 (4)	0.001 (4)
C1	0.032 (6)	0.035 (6)	0.033 (6)	-0.001 (4)	0.002 (5)	0.002 (5)
C2	0.033 (6)	0.049 (7)	0.035 (6)	0.001 (5)	0.007 (5)	-0.002 (5)
C3	0.031 (7)	0.114 (12)	0.052 (8)	-0.002 (6)	0.008 (6)	0.020 (8)
C4	0.043 (7)	0.097 (11)	0.050 (8)	0.005 (6)	0.023 (6)	0.020 (7)
C5	0.052 (7)	0.070 (9)	0.024 (6)	0.003 (6)	0.007 (5)	0.009 (5)
C6	0.039 (6)	0.047 (7)	0.037 (6)	-0.001 (5)	0.009 (5)	0.011 (5)
C7	0.024 (5)	0.028 (6)	0.037 (6)	-0.001 (4)	0.001 (5)	-0.004 (5)
C8	0.043 (6)	0.016 (5)	0.026 (5)	-0.006 (4)	0.000 (4)	0.000 (4)
C9	0.044 (6)	0.048 (7)	0.028 (6)	-0.002 (5)	-0.009 (5)	-0.002 (5)
C10	0.063 (7)	0.032 (6)	0.029 (6)	-0.001 (6)	0.008 (5)	-0.006 (5)
C11	0.050 (7)	0.029 (7)	0.045 (7)	0.001 (5)	0.010 (5)	-0.008 (5)
C12	0.032 (6)	0.024 (6)	0.037 (6)	0.000 (4)	-0.001(5)	0.003 (5)

Geometric parameters (Å, °)

Bi1—Cl1	2.519 (3)	C4—H4A	0.9300
Bi1—Cl2	2.624 (3)	C5—C6	1.359 (13)
Bi1—Cl3	2.787 (3)	С5—Н5А	0.9300
Bi1—Cl4	2.767 (3)	С6—Н6А	0.9300
Bi1—Cl5	2.664 (3)	C7—N1	1.319 (11)
O1W—H1WA	0.8500	C7—N2	1.335 (10)
O1W—H1WB	0.8500	С7—С8	1.443 (12)
N1—H1A	0.8600	C8—C9	1.399 (12)
N2—H2A	0.8600	C8—C12	1.400 (12)
N3—H3B	0.8600	C9—N3	1.327 (12)
C1—C6	1.389 (13)	С9—Н9А	0.9300
C1—C2	1.389 (12)	C10—N3	1.322 (13)
C1—N2	1.390 (11)	C10—C11	1.354 (13)

C2—N1	1.376 (12)	C10—H10A	0.9300
C2—C3	1.409 (14)	C11—C12	1.363 (13)
C3—C4	1.375 (15)	C11—H11A	0.9300
С3—НЗА	0.9300	C12—H12A	0.9300
C4—C5	1.383 (14)		
Cl1—Bi1—Cl2	88.33 (9)	C2—C3—H3A	121.4
Cl1—Bi1—Cl3	97.85 (9)	C3—C4—C5	120.7 (10)
Cl1—Bi1—Cl4	83.99 (8)	C3—C4—H4A	119.6
Cl1—Bi1—Cl5	91.41 (10)	C5—C4—H4A	119.6
Cl2—Bi1—Cl3	84.18 (9)	C6—C5—C4	123.5 (10)
Cl2—Bi1—Cl4	166.23 (9)	C6—C5—H5A	118.2
Cl2—Bi1—Cl5	91.96 (9)	C4—C5—H5A	118.2
Cl4—Bi1—Cl3	85.56 (8)	C5—C6—C1	116.2 (10)
Cl5—Bi1—Cl3	169.84 (8)	C5—C6—H6A	121.9
Cl5—Bi1—Cl4	99.63 (8)	C1—C6—H6A	121.9
H1WA—O1W—H1WB	87.0	N1—C7—N2	107.9 (8)
C2—N1—H1A	124.7	N1—C7—C8	126.9 (9)
C7—N1—C2	110.5 (8)	N2—C7—C8	125.1 (8)
C7—N1—H1A	124.7	C9—C8—C12	116.6 (9)
C1—N2—H2A	125.1	C9—C8—C7	120.1 (9)
C7—N2—C1	109.7 (8)	C12—C8—C7	123.3 (8)
C7—N2—H2A	125.1	N3—C9—C8	119.5 (10)
C9—N3—H3B	118.2	N3—C9—H9A	120.2
C10—N3—C9	123.5 (10)	С8—С9—Н9А	120.2
C10—N3—H3B	118.2	N3-C10-C11	120.0 (10)
C6—C1—C2	122.0 (9)	N3-C10-H10A	120.0
C6—C1—N2	132.4 (9)	C11—C10—H10A	120.0
C2-C1-N2	105.5 (8)	C10-C11-C12	119.3 (10)
N1—C2—C1	106.2 (9)	C10-C11-H11A	120.4
N1—C2—C3	133.4 (10)	C12-C11-H11A	120.4
C1—C2—C3	120.3 (10)	C11—C12—C8	121.1 (9)
C4—C3—C2	117.2 (10)	C11—C12—H12A	119.4
C4—C3—H3A	121.4	C8—C12—H12A	119.4

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!\!- \!$	
N1—H1A····Cl5 ⁱ	0.86	2.65	3.267 (8)	130	
N1—H1A…Cl1 ⁱⁱ	0.86	2.66	3.302 (8)	133	
N2—H2A…O1W ⁱⁱⁱ	0.86	1.86	2.680 (9)	159	
N3—H3B…Cl4 ^{iv}	0.86	2.33	3.104 (9)	150	
O1W—H1WA…Cl3 ⁱⁱ	0.85	2.62	3.292 (7)	137	
O1W—H1WB···Cl5	0.85	2.77	3.190 (7)	112	
Symmetry codes: (i) $-x+1$, $-y+2$, $-z+1$; (ii) x , $-y+3/2$, $z+1/2$; (iii) $x-1$, y , z ; (iv) x , y , $z+1$.					

Fig. 1

